Jentashapir Journal of Health Research

Published by: Kowsar

Study on the Efficiency of a Multi-layer Perceptron Neural Network Based on the Number of Hidden Layers and Nodes for Diagnosing Coronary- Artery Disease

Hamid Moghaddasi 1 , Bahareh Ahmadzadeh 2 , * , Reza Rabiei 1 and Mohammad Farahbakhsh 3
Authors Information
1 Department of Health Information Technology and Management, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Jentashapir Journal of Health Research: June 2017, 8 (3); e63032
  • Published Online: June 30, 2017
  • Article Type: Research Article
  • Received: August 15, 2016
  • Revised: May 20, 2017
  • Accepted: June 15, 2017
  • DOI: 10.5812/jjhr.63032

To Cite: Moghaddasi H, Ahmadzadeh B, Rabiei R, Farahbakhsh M. Study on the Efficiency of a Multi-layer Perceptron Neural Network Based on the Number of Hidden Layers and Nodes for Diagnosing Coronary- Artery Disease, Jundishapur J Helath Res. 2017 ;8(3):e63032. doi: 10.5812/jjhr.63032.

Abstract
Copyright: Copyright © 2017, Jentashapir Journal of Health Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
References
  • 1. Haykin S. Neural Networks, A comprehensive Foundation Second Edition. Prentice-Hall. Inc; 1999.
  • 2. Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med. 2001;23(1):89-109. doi: 10.1016/S0933-3657(01)00077-X. [PubMed: 11470218].
  • 3. Kamruzzaman SM, Jehad Sarkar AM. A new data mining scheme using artificial neural networks. Sensors (Basel). 2011;11(5):4622-47. doi: 10.3390/s110504622. [PubMed: 22163866].
  • 4. Ni X. . . ;:381-4 . Research of data mining based on neural networks. World Acad Sci Eng Technol. 2008;39:381-4.
  • 5. Al-Shayea Q. artificial neural networks in medical diagnosis. Int J Comput Sci Issue. 2011;8(2):150-4. doi: 10.2478/v10136-012-0031-x.
  • 6. Zhou ZH, Jiang Y. Medical diagnosis with C4.5 Rule preceded by artificial neural network ensemble. IEEE Trans Inf Technol Biomed. 2003;7(1):37-42. [PubMed: 12670017].
  • 7. Venkatesan P, Anitha S. Application of a radial basis function neural network for diagnosis of diabetes mellitus. Curr Sci. 2006;91(9):1195-9.
  • 8. Ince T, Kiranyaz S, Pulkkinen J, Gabbouj M. Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis. Expert Syst Appl. 2010;37(12):8450-61. doi: 10.1016/j.eswa.2010.05.033.
  • 9. Jun SC, Pearlmutter BA, Nolte G. Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise. Phys Med Biol. 2002;47(14):2547-60. [PubMed: 12171339].
  • 10. Ganesan N, Venkatesh K, Rama M, Palani AM. Application of neural networks in diagnosing cancer disease using demographic data. Int J Comput Appl. 2010;1(26):7685. doi: 10.5120/476-783.
  • 11. Priddy KL, Keller PE. Artificial neural networks: an introduction. SPIE Press; 2005.
  • 12. Yan H, Jiang Y, Zheng J, Peng C, Li Q. A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst Appl. 2006;30(2):282-1. doi: 10.1016/j.eswa.2005.07.022.
  • 13. Beale MH, Hagan MT, Demuth HB. Neural Network Toolbox™ Getting Started Guide. 1992.
  • 14. Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci. 2006;43(2):224-35. doi: 10.1016/j.ijrmms.2005.06.007.
  • 15. Lewenstein K. Radial basis function neural network approach for the diagnosis of coronary artery disease based on the standard electrocardiogram exercise test. Med Biol Eng Comput. 2001;39(3):362-7. doi: 10.1007/BF02345292. [PubMed: 11465892].
  • 16. Mobley BA, Schechter E, Moore WE, McKee PA, Eichner JE. Predictions of coronary artery stenosis by artificial neural network. Artif Intell Med. 2000;18(3):187-203. doi: 10.1016/S0933-3657(99)00040-8. [PubMed: 10675714].
  • 17. Kukar M, Grošelj C. Supporting diagnostics of coronary artery disease with neural networks. International Conference on Adaptive and Natural Computing Algorithms. Springer; 2011.
  • 18. Atkov OY, Gorokhova SG, Sboev AG, Generozov EV, Muraseyeva EV, Moroshkina SY, et al. Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J Cardiol. 2012;59(2):190-4. doi: 10.1016/j.jjcc.2011.11.005. [PubMed: 22218324].
  • 19. Colak MC, Colak C, Kocaturk H, Sagiroglu S, Barutcu I. Predicting coronary artery disease using different artificial neural network models. Anadolu Kardiyol Derg. 2008;8(4):249-54. [PubMed: 18676299].
  • 20. Tsipouras MG, Exarchos TP, Fotiadis DI, Kotsia AP, Vakalis KV, Naka KK, et al. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE Trans Inf Technol Biomed. 2008;12(4):447-58. doi: 10.1109/TITB.2007.907985. [PubMed: 18632325].
  • 21. Stefko K. Coronary Artery Diagnosis Aided by Neural Network. Pol J Med Phys Eng. 2007;13(3):149-55.
  • 22. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-57. doi: 10.1613/jair.953.
  • 23. Longadge R, Dongre S, Malik L. Class imbalance problem in data mining review. Int J Comput Sci Netw. 2013;2(1).
  • 24. Hastie T, Tibshirani R, Friedman J. Overview of supervised learning. The elements of statistical learning. 9-41. Springer; 2009.
  • 25. Mathworks . Mathworks. 2014, [cited 10 December]. Available from: www.mathworks.com.
  • 26. Zhu W, Zeng N, Wang N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. Health Care Life Sci. 2010;19.
  • 27. Nandy RR, Cordes D. Novel ROC-type method for testing the efficiency of multivariate statistical methods in fMRI. Magn Reson Med. 2003;49(6):1152-62. doi: 10.1002/mrm.10469. [PubMed: 12768594].
  • 28. Chong CF, Li YC, Wang TL, Chang H. Stratification of adverse outcomes by preoperative risk factors in coronary artery bypass graft patients: an artificial neural network prediction model. AMIA Annu Symp Proc. 2003:160-4. [PubMed: 14728154].
  • 29. Fujita H, Katafuchi T, Uehara T, Nishimura T. Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull's-eye images. J Nucl Med. 1992;33(2):272-6. [PubMed: 1732455].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Altmetric:

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader