Jentashapir Journal of Health Research

Published by: Kowsar

Evaluation of Low Intensity Pulsed Ultrasound Effects on the Osteogenesis Potential of Demineralized Bone Matrix in Experimental Tibial Defect in Rabbits

Maryam Ezzati Givi 1 , * , Ali Baniadam 1 , Saleh Esmaeilzadeh 2 , Alireza Ghadiri 3 and Shahin Gohar Pey 4
Authors Information
1 Department of Surgery, Faculty of Veterinary, Shahid Chamran University, Ahvaz, IR Iran
2 Department of Pathobiology, Faculty of Veterinary, Shahid Chamran University, Ahvaz, IR Iran
3 Department of Radiology, Faculty of Veterinary, Shahid Chamran University, Ahvaz, IR Iran
4 Department of Physiotherapy, Faculty of Rehabilitation, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
Article information
  • Jentashapir Journal of Health Research: October 01, 2016, 7 (5); e34125
  • Published Online: September 24, 2016
  • Article Type: Research Article
  • Received: October 28, 2015
  • Revised: June 1, 2016
  • Accepted: July 9, 2016
  • DOI: 10.17795/jjhr-34125

To Cite: Ezzati Givi M, Baniadam A, Esmaeilzadeh S, Ghadiri A, Gohar Pey S. et al. Evaluation of Low Intensity Pulsed Ultrasound Effects on the Osteogenesis Potential of Demineralized Bone Matrix in Experimental Tibial Defect in Rabbits, Jentashapir J Helath Res. 2016 ;7(5):e34125. doi: 10.17795/jjhr-34125.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
References
  • 1. Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005; 26(27): 5444-53[DOI][PubMed]
  • 2. Haug RH, Schwimmer A. Fibrous union of the mandible: a review of 27 patients. J Oral Maxillofac Surg. 1994; 52(8): 832-9[PubMed]
  • 3. Jahangir AANRM, Mehta S, Sharan A. Bone- graft substitutes in orthopaedic surgery. 2009;
  • 4. Wol finbarger L, Eisenlohr LM, Ruth K. Maximizing new bone formation for successful bone implantation. Musculoskeletel Tissue Regeneration Biological Materials and Methods. Humana press. 2006; : 93-119
  • 5. Pietrzak WS, Perns SV, Keyes J, Woodell-May J, McDonald NM. Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg. 2005; 44(5): 345-53[DOI][PubMed]
  • 6. Renno AC, Favaro-Pipi E, Fernandes K, Tim C, Ribeiro DA. Ultrasound therapy modulates osteocalcin expression during bone repair in rats. Ultrasonics. 2012; 52(1): 111-6[DOI][PubMed]
  • 7. Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol. 2007; 93(1 - 3): 384-98[DOI][PubMed]
  • 8. Nolte PA, Klein-Nulend J, Albers GH, Marti RK, Semeins CM, Goei SW, et al. Low-intensity ultrasound stimulates endochondral ossification in vitro. J Orthop Res. 2001; 19(2): 301-7[DOI][PubMed]
  • 9. Skerry TM. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008; 473(2): 117-23[DOI][PubMed]
  • 10. Dyson M. Mechanisms involved in therapeutic ultrasound. Physiotherapy. 1987; 73(3): 116-20
  • 11. Xie LK, Wangrangsimakul K, Suttapreyasri S, Cheung LK, Nuntanaranont T. A preliminary study of the effect of low intensity pulsed ultrasound on new bone formation during mandibular distraction osteogenesis in rabbits. Int J Oral Maxillofac Surg. 2011; 40(7): 730-6[DOI][PubMed]
  • 12. Akiyama H, Hachiya Y, Otsuka H, Kurisuno M, Kawanabe K, Katayama N, et al. Low-intensity pulsed ultrasound therapy stimulates callus formation between host femur and cortical onlay strut allograft. Ultrasound Med Biol. 2014; 40(6): 1197-203[DOI][PubMed]
  • 13. Maeda T, Masaki C, Kanao M, Kondo Y, Ohta A, Nakamoto T, et al. Low-intensity pulsed ultrasound enhances palatal mucosa wound healing in rats. J Prosthodont Res. 2013; 57(2): 93-8[DOI][PubMed]
  • 14. Shi M, Liu B, Liu G, Wang P, Yang M, Li Y, et al. Low intensity-pulsed ultrasound induced apoptosis of human hepatocellular carcinoma cells in vitro. Ultrasonics. 2016; 64: 43-53[DOI][PubMed]
  • 15. Lyon R, Liu XC, Meier J. The effects of therapeutic vs. high-intensity ultrasound on the rabbit growth plate. J Orthop Res. 2003; 21(5): 865-71[DOI][PubMed]
  • 16. Huang W, Hasegawa T, Imai Y, Takeda D, Akashi M, Komori T. Low-intensity pulsed ultrasound enhances bone morphogenetic protein expression of human mandibular fracture haematoma-derived cells. Int J Oral Maxillofac Surg. 2015; 44(7): 929-35[DOI][PubMed]
  • 17. Wijdicks CA, Virdi AS, Sena K, Sumner DR, Leven RM. Ultrasound enhances recombinant human BMP-2 induced ectopic bone formation in a rat model. Ultrasound Med Biol. 2009; 35(10): 1629-37[DOI][PubMed]
  • 18. Hou CH, Hou SM, Tang CH. Ultrasound increased BMP-2 expression via PI3K, Akt, c-Fos/c-Jun, and AP-1 pathways in cultured osteoblasts. J Cell Biochem. 2009; 106(1): 7-15[DOI][PubMed]
  • 19. Xue H, Zheng J, Cui Z, Bai X, Li G, Zhang C, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. PLoS One. 2013; 8(7): 68926[DOI][PubMed]
  • 20. Lu H, Qin L, Cheung W, Lee K, Wong W, Leung K. Low-intensity pulsed ultrasound accelerated bone-tendon junction healing through regulation of vascular endothelial growth factor expression and cartilage formation. Ultrasound Med Biol. 2008; 34(8): 1248-60[DOI][PubMed]
  • 21. Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T. Transforming growth factor-beta1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. Ultrasound Med Biol. 2005; 31(12): 1713-21[DOI][PubMed]
  • 22. Marrerol A, Enizl D. Low intensity pulsed ultrasound produces and increase of IGF-I gene expression during fibular bone repair in rats. Growth Horm IGF res. 2012; 22-88
  • 23. Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthopaedic Translation. 2015; 3(3): 95-104
  • 24. Babuccu C, Keklikoglu N, Baydogan M, Kaynar A. Cumulative effect of low-level laser therapy and low-intensity pulsed ultrasound on bone repair in rats. Int J Oral Maxillofac Surg. 2014; 43(6): 769-76[DOI][PubMed]
  • 25. Zura R, Della Rocca GJ, Mehta S, Harrison A, Brodie C, Jones J, et al. Treatment of chronic (>1 year) fracture nonunion: heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS). Injury. 2015; 46(10): 2036-41[DOI][PubMed]
  • 26. Wang J, Li JW, Chen L. Effect of low-intensity pulsed ultrasound on posterolateral lumbar fusion of rabbit. Asian Pac J Trop Med. 2015; 8(1): 68-72[DOI][PubMed]
  • 27. Lubbert PH, van der Rijt RH, Hoorntje LE, van der Werken C. Low-intensity pulsed ultrasound (LIPUS) in fresh clavicle fractures: a multi-centre double blind randomised controlled trial. Injury. 2008; 39(12): 1444-52[DOI][PubMed]
  • 28. Emami A, Petren-Mallmin M, Larsson S. No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures. J Orthop Trauma. 1999; 13(4): 252-7[PubMed]
  • 29. Handolin L, Kiljunen V, Arnala I, Kiuru MJ, Pajarinen J, Partio EK, et al. No long-term effects of ultrasound therapy on bioabsorbable screw-fixed lateral malleolar fracture. Scand J Surg. 2005; 94(3): 239-42[PubMed]
  • 30. Chang WH, Sun JS, Chang SP, Lin JC. Study of thermal effects of ultrasound stimulation on fracture healing. Bioelectromagnetics. 2002; 23(4): 256-63[PubMed]
  • 31. Lai CH, Chuang CC, Li JK, Chen SC, Chang WH. Effects of ultrasound on osteotomy healing in a rabbit fracture model. Ultrasound Med Biol. 2011; 37(10): 1635-43[DOI][PubMed]
  • 32. Tsai CL, Chang WH, Liu TK, Song GM. Ultrasound can affect bone healing both locally and systemically. Chin J Physiol. 1991; 34(2): 213-22[PubMed]
  • 33. Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone. 2001; 29(5): 431-6[PubMed]
  • 34. Kiely PD, Brecevich AT, Taher F, Nguyen JT, Cammisa FP, Abjornson C. Evaluation of a new formulation of demineralized bone matrix putty in a rabbit posterolateral spinal fusion model. Spine J. 2014; 14(9): 2155-63[DOI][PubMed]
  • 35. Hu B, Cai XZ, Shi ZL, Chen YL, Zhao X, Zhu HX, et al. Microbubble injection enhances inhibition of low-intensity pulsed ultrasound on debris-induced periprosthetic osteolysis in rabbit model. Ultrasound Med Biol. 2015; 41(1): 177-86[DOI][PubMed]
  • 36. Pietrzak WS, Woodell-May J, McDonald N. Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg. 2006; 17(1): 84-90[DOI][PubMed]
  • 37. Edwards JT, Diegmann MH, Scarborough NL. Osteoinduction of human demineralized bone: characterization in a rat model. Clin Orthop Relat Res. 1998; (357): 219-28[PubMed]
  • 38. Wang JC, Alanay A, Mark D, Kanim LE, Campbell PA, Dawson EG, et al. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J. 2007; 16(8): 1233-40[DOI][PubMed]
  • 39. Traianedes K, Russell JL, Edwards JT, Stubbs HA, Shanahan IR, Knaack D. Donor age and gender effects on osteoinductivity of demineralized bone matrix. J Biomed Mater Res B Appl Biomater. 2004; 70(1): 21-9[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments