Jentashapir Journal of Health Research

Published by: Kowsar

Zinc Chloride Reverse Influence on Dexamethasone Depressant Effects in Adult Male Rats

Seyedeh Parisa Navabi 1 , Hooman Eshagh Harooni 1 , * , Ahmad Ali Moazedi 1 and Lotfolah Khajehpour 1
Authors Information
1 Department of Biology, Faculty of Science, Shahid Chamran University, Ahvaz, IR Iran
Article information
  • Jentashapir Journal of Health Research: December 01, 2015, 6 (6); e24297
  • Published Online: December 14, 2015
  • Article Type: Research Article
  • Received: October 5, 2014
  • Accepted: March 19, 2015
  • DOI: 10.17795/jjhr-24297

To Cite: Navabi S P, Eshagh Harooni H, Moazedi A A, Khajehpour L. Zinc Chloride Reverse Influence on Dexamethasone Depressant Effects in Adult Male Rats, Jentashapir J Health Res. 2015 ; 6(6):e24297. doi: 10.17795/jjhr-24297.

Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Jelic S, Cupic Z, Kolar-Anic L. Mathematical modeling of the hypothalamic-pituitary-adrenal system activity. Math Biosci. 2005; 197(2): 173-87[DOI][PubMed]
  • 2. Maccari S, Morley-Fletcher S. Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology. 2007; 32 Suppl 1-5[DOI][PubMed]
  • 3. Ninomiya EM, Martynhak BJ, Zanoveli JM, Correia D, da Cunha C, Andreatini R. Spironolactone and low-dose dexamethasone enhance extinction of contextual fear conditioning. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34(7): 1229-35[DOI][PubMed]
  • 4. Deussing JM, Wurst W. Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. C R Biol. 2005; 328(2): 199-212[PubMed]
  • 5. Casarotto PC, Andreatini R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. Eur Neuropsychopharmacol. 2007; 17(11): 735-42[DOI][PubMed]
  • 6. Van den Bergh BR, Van Calster B, Pinna Puissant S, Van Huffel S. Self-reported symptoms of depressed mood, trait anxiety and aggressive behavior in post-pubertal adolescents: Associations with diurnal cortisol profiles. Horm Behav. 2008; 54(2): 253-7[DOI][PubMed]
  • 7. Ulloa JL, Castaneda P, Berrios C, Diaz-Veliz G, Mora S, Bravo JA, et al. Comparison of the antidepressant sertraline on differential depression-like behaviors elicited by restraint stress and repeated corticosterone administration. Pharmacol Biochem Behav. 2010; 97(2): 213-21[DOI][PubMed]
  • 8. Karssen AM, Meijer OC, Berry A, Sanjuan Pinol R, de Kloet ER. Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinology. 2005; 146(12): 5587-95[DOI][PubMed]
  • 9. Bremner JD, Vythilingam M, Vermetten E, Anderson G, Newcomer JW, Charney DS. Effects of glucocorticoids on declarative memory function in major depression. Biol Psychiatry. 2004; 55(8): 811-5[DOI][PubMed]
  • 10. Mason BL, Pariante CM, Thomas SA. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology. 2008; 149(10): 5244-53[DOI][PubMed]
  • 11. Watanabe M, Tamano H, Kikuchi T, Takeda A. Susceptibility to stress in young rats after 2-week zinc deprivation. Neurochem Int. 2010; 56(3): 410-6[DOI][PubMed]
  • 12. Takeda A. Zinc signaling in the hippocampus and its relation to pathogenesis of depression. Mol Neurobiol. 2011; 44(2): 166-74[DOI][PubMed]
  • 13. Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, et al. Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res. 2012; 226(1): 259-64[DOI][PubMed]
  • 14. Hosea Blewett HJ, Rector ES, Taylor CG. Altered ex vivo cytokine production in zinc-deficient, pair-fed and marginally zinc-deficient growing rats is independent of serum corticosterone concentrations. Br J Nutr. 2008; 100(4): 820-8[DOI][PubMed]
  • 15. Mlyniec K, Budziszewska B, Reczynski W, Doboszewska U, Pilc A, Nowak G. Zinc deficiency alters responsiveness to antidepressant drugs in mice. Pharmacol Rep. 2013; 65(3): 579-92[PubMed]
  • 16. Szewczyk B, Poleszak E, Sowa-Kucma M, Siwek M, Dudek D, Ryszewska-Pokrasniewicz B, et al. Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol Rep. 2008; 60(5): 588-9[PubMed]
  • 17. Szewczyk B, Poleszak E, Wlaz P, Wrobel A, Blicharska E, Cichy A, et al. The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(2): 323-9[DOI][PubMed]
  • 18. Takeda A. Zinc signaling in the hippocampus and its relation to pathogenesis of depression. J Trace Elem Med Biol. 2012; 26(2-3): 80-4[DOI][PubMed]
  • 19. Takeda A, Tamano H. Proposed glucocorticoid-mediated zinc signaling in the hippocampus. Metallomics. 2012; 4(7): 614-8[DOI][PubMed]
  • 20. Takeda A, Tamano H, Kan F, Itoh H, Oku N. Anxiety-like behavior of young rats after 2-week zinc deprivation. Behav Brain Res. 2007; 177(1): 1-6[DOI][PubMed]
  • 21. Takeda A, Tamano H. Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev. 2009; 62(1): 33-44[DOI][PubMed]
  • 22. Tamano H, Kan F, Kawamura M, Oku N, Takeda A. Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivation. Neurochem Int. 2009; 55(7): 536-41[DOI][PubMed]
  • 23. Samardzic J, Savic K, Stefanovic N, Matunovic R, Baltezarevic D, Obradovic M, et al. Anxiolytic and antidepressant effect of zinc on rats and its impact on general behavioural parameters. Vojnosanit Pregl. 2013; 70(4): 391-5[PubMed]
  • 24. Wang S, Lim G, Zeng Q, Sung B, Yang L, Mao J. Central glucocorticoid receptors modulate the expression and function of spinal NMDA receptors after peripheral nerve injury. J Neurosci. 2005; 25(2): 488-95[DOI][PubMed]
  • 25. Navabi SP, Moazedi AA, Eshagh-Harooni H, Khaje-pour L. Dual effect of dexamethasone administration on anxiety and depression in adult male rats. Physiol Pharmacol. 2013; 17(2): 240-9
  • 26. Partyka A, Jastrzebska-Wiesek M, Szewczyk B, Stachowicz K, Slawinska A, Poleszak E, et al. Anxiolytic-like activity of zinc in rodent tests. Pharmacol Rep. 2011; 63(4): 1050-5[PubMed]
  • 27. Tegethoff M, Pryce C, Meinlschmidt G. Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review. Endocr Rev. 2009; 30(7): 753-89[DOI][PubMed]
  • 28. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000; 23(5): 477-501[DOI][PubMed]
  • 29. Navarrete M, Nunez H, Ruiz S, Soto-Moyano R, Valladares L, White A, et al. Prenatal undernutrition decreases the sensitivity of the hypothalamo-pituitary-adrenal axis in rat, as revealed by subcutaneous and intra-paraventricular dexamethasone challenges. Neurosci Lett. 2007; 419(2): 99-103[DOI][PubMed]
  • 30. Shoener JA, Baig R, Page KC. Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am J Physiol Regul Integr Comp Physiol. 2006; 290(5)-73[DOI][PubMed]
  • 31. Mesquita AR, Wegerich Y, Patchev AV, Oliveira M, Leao P, Sousa N, et al. Glucocorticoids and neuro- and behavioural development. Semin Fetal Neonatal Med. 2009; 14(3): 130-5[DOI][PubMed]
  • 32. Hougaard KS, Andersen MB, Kjaer SL, Hansen AM, Werge T, Lund SP. Prenatal stress may increase vulnerability to life events: comparison with the effects of prenatal dexamethasone. Brain Res Dev Brain Res. 2005; 159(1): 55-63[DOI][PubMed]
  • 33. Li SX, Fujita Y, Zhang JC, Ren Q, Ishima T, Wu J, et al. Role of the NMDA receptor in cognitive deficits, anxiety and depressive-like behavior in juvenile and adult mice after neonatal dexamethasone exposure. Neurobiol Dis. 2014; 62: 124-34[DOI][PubMed]
  • 34. Takahashi T, Kimoto T, Tanabe N, Hattori TA, Yasumatsu N, Kawato S. Corticosterone acutely prolonged N-methyl-d-aspartate receptor-mediated Ca2+ elevation in cultured rat hippocampal neurons. J Neurochem. 2002; 83(6): 1441-51[PubMed]
  • 35. Jacobs CM, Trinh MD, Rootwelt T, Lomo J, Paulsen RE. Dexamethasone induces cell death which may be blocked by NMDA receptor antagonists but is insensitive to Mg2+ in cerebellar granule neurons. Brain Res. 2006; 1070(1): 116-23[DOI][PubMed]
  • 36. Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL. Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res. 2003; 144(1-2): 87-93[PubMed]
  • 37. Suwanjang W, Holmstrom KM, Chetsawang B, Abramov AY. Glucocorticoids reduce intracellular calcium concentration and protects neurons against glutamate toxicity. Cell Calcium. 2013; 53(4): 256-63[DOI][PubMed]
  • 38. Jing H, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M, Taniguchi Y, et al. Multisignal regulation of the rat NMDA1 receptor subunit gene--a pivotal role of glucocorticoid-dependent transcription. Life Sci. 2008; 82(23-24): 1137-41[DOI][PubMed]
  • 39. Kroczka B, Branski P, Palucha A, Pilc A, Nowak G. Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull. 2001; 55(2): 297-300[PubMed]
  • 40. Nowak G, Szewczyk B, Wieronska JM, Branski P, Palucha A, Pilc A, et al. Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull. 2003; 61(2): 159-64[PubMed]
  • 41. Swardfager W, Herrmann N, McIntyre RS, Mazereeuw G, Goldberger K, Cha DS, et al. Potential roles of zinc in the pathophysiology and treatment of major depressive disorder. Neurosci Biobehav Rev. 2013; 37(5): 911-29[DOI][PubMed]
  • 42. Cunha MP, Machado DG, Bettio LE, Capra JC, Rodrigues AL. Interaction of zinc with antidepressants in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(8): 1913-20[DOI][PubMed]
  • 43. Franco JL, Posser T, Brocardo PS, Trevisan R, Uliano-Silva M, Gabilan NH, et al. Involvement of glutathione, ERK1/2 phosphorylation and BDNF expression in the antidepressant-like effect of zinc in rats. Behav Brain Res. 2008; 188(2): 316-23[DOI][PubMed]
  • 44. Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav. 2011; 59(3): 279-89[DOI][PubMed]
  • 45. Ferreira VM, Takahashi RN, Morato GS. Dexamethasone reverses the ethanol-induced anxiolytic effect in rats. Pharmacol Biochem Behav. 2000; 66(3): 585-90[PubMed]
  • 46. Takeda A, Tamano H. Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances. J Neurosci Res. 2010; 88(14): 3002-10[DOI][PubMed]
  • 47. Takeda A. Analysis of Brain Function and Prevention of Brain Diseases: the Action of Trace Metals. J Health Sci. 2004; 50(5): 429-42[DOI]
  • 48. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M. Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol. 2005; 75(6): 367-90[DOI][PubMed]
  • 49. Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JN, Bannerman DM. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur J Pharmacol. 2010; 626(1): 49-56[DOI][PubMed]
  • 50. Poleszak E, Wosko S, Serefko A, Szopa A, Wlaz A, Szewczyk B, et al. Effects of ifenprodil on the antidepressant-like activity of NMDA ligands in the forced swim test in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 46: 29-35[DOI][PubMed]
  • 51. Tomaz VS, Cordeiro RC, Costa AM, de Lucena DF, Nobre Junior HV, de Sousa FC, et al. Antidepressant-like effect of nitric oxide synthase inhibitors and sildenafil against lipopolysaccharide-induced depressive-like behavior in mice. Neuroscience. 2014; 268: 236-46[DOI][PubMed]
  • 52. Pinnock SB, Balendra R, Chan M, Hunt LT, Turner-Stokes T, Herbert J. Interactions between nitric oxide and corticosterone in the regulation of progenitor cell proliferation in the dentate gyrus of the adult rat. Neuropsychopharmacology. 2007; 32(2): 493-504[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments